MIIC Analysis Plugin

© Version 1.0.0
O Accessing ICPlan Data
© ICPlans Collecting Filtered Data
O |CPlans Collecting Averaged Data
O Generating Analysis Results
© Developing Plugins
© The AnalysisPlugin Interface
© Versioning Methods
© Methods to Test ICPlan Support
© Input/Output Metadata Methods
© Analysis Methods
© AnalysisData Object
O ICPlan Metadata Access
© |Tree Access
© Obtaining ICPlan Data
O Testing Plugins
© Deploying Plugins

Version 1.0.0

The MIIC Analysis Plugin interface allows users to develop new data analysis routines written in Java. Plugins are developed independantly from
the MIIC web application but may run on the web server in the context of a executing a users' inter-calibration plan (ICPlan). Users create an
analysis task for their ICPlan by selecting one of the available analysis plugins. Analysis tasks always run after the data for a plan has been
collected. Tasks associated with an ICPlan will automatically run whenever the plan has new data available.

Here are the key features and restrictions of MIIC plugin-based analysis:

® Analysis tasks are tied to one ICPlan. They may not view data from other ICPlans.

® Analysis tasks may be "chained" together. Each analysis task that runs has the ability to access all the ICPlan data, plus the results of
tasks that ran before it.

® Analysis tasks may accept user input. The input format must be defined by the plugin.

® Analysis task execution is optimized by grouping tasks by plugin. This allows plugins to reduce file /0. For example, when generating
statistics for large plans it makes sense to each data file once and then generate all statistics, as opposed to re-loading the data file for
every statistic.

Plugins access ICPlan data and provide analysis results in the formats defined by Abstract Interfaces for Data Analysis (AIDA). AIDA is a set of
defined interfaces and formats for representing common data analysis objects. The most important of these interfaces are the Histogram, Profile
and Tuple. Please see http://aida.freehep.org for a detailed description of these objects and their interfaces and capabilities.

Accessing ICPlan Data

Plugins access ICPlan data via ITuple and IProfile AIDA analysis objects. ITuples represent filtered data and IProfiles represent averaged data.
These formats should be more convenient to plugin authors than using the the NetCDF API, although that is still a possibility in future versions.

ITuple and IProfile objects are generated by loading the ICPlans' NetCDF data files and converting, on-demand.

ICPlans Collecting Filtered Data

For ICPlans collecting filtered data (a.k.a N_TUPLE format), analysis data is represented using the AIDA structure "ITuple". There will be a
separate ITuple for every file queried. ITuples have a "flat" (1D) view of your filtered data.

Inside each ITuple is a column per data variable and a row per observation.

The following shows the analysis objects generated for a ICPlan returning filtered data, in tree form.

http://aida.freehep.org

A JPROTO
de TARGET

: BB tuple_0
4 | [TARGET

event_5

NPP_VIMD_SS.A2012021.1210.P1_03110.2014057160552.hdf
----- event_6
----- event_7
----- event_8
----- event_9
----- event_10
----- event_11

----- event_12

The PROTO folder contains prototype JAIDA objects that represent what data was collected. This folder will contain one or more ITuple
prototypes. Prototypes have a column for every variable stored in the tuple, telling you its name and type, and attributes telling you the min/max of
each variable. There are no rows in the ITuple, i.e. no data.

TARGET and REFERENCE folders shows you all the data that was collected by events index and source file. In this example, the first 5 events
(event_0 to event_4) are missing because no OPeNDAP servers had the required files.

Where are the ITuples?
Note that there are no actual ITuple objects with data stored in this tree. This is because ITuples can be quite large and won't all fit into
memory at once.

Instead, plugins must use an interface to retrieve objects on-demand.

ICPlans Collecting Averaged Data

For ICPlans collecting averaged data (a.k.a 2D_HISTOGRAMS), analysis data is represented using the AIDA structure "IProfile2D". Each variable
collected will have a separate IProfile2D object per event. IProfile2D objects have 2D binned data and statistics.

Below is a sample data tree for an ICPlan that collected 2D_HISTOGRAM data:

4 /PROTO

4 REFERENCE

|#2 SolarzZenithAngle_Sub
|7 SatelliteZenithAngle_Sub
|#” Reflectance_l1_Avg

|#” Radiance_|1_Avg

|#” Longitude_Sub

|#” Latitude_Sub

|#” Height_Sub

|#” BrightnessTemperature_M15_Sub
TARGET
4. IREFERENCE
4. event_0
l NPP_VIMD_SS.A2013336.0525.P1_03110.2014141231839.hdf
| |#? SolarZenithAngle_Sub

|#” SatelliteZenithAngle_Sub

|#? Reflectance_|1_Avg

Here, the PROTO folder contains empty 2D Profiles representing the data variables collected by the plan.

As before, the TARGET and REFERENCE folders show you data collected by event index and file. Because IProfile2D objects are small, they
can be kept in memory. IProfile2D objects can be viewed directly on the analysis webpage:

SolarZenithAngle_Sub
2D Profile: /REFERENCE/event_0/NPP_VIMD_SS.A2013336.0525.P1_03110.2014141231839.hdf/SolarZenithAngle_Sub

I 20
40

-25
60

-50

(default latitude var)

= 100

-100
120 130 140 150 160 170 180 190 200 210 220 Count: 8695400

(default longitude var) Mean: 44.990865
Std Dev: 13.892399

Highcharts.com

Generating Analysis Results

Analysis plugins must store their results in a JAIDA ITree object. The result itself can be any JAIDA object, and annotations can be used to
include additional information. Plugins have read-write access to the results tree, so they may also view and/or modify the output of other plugins.

Analysis tasks, when executed, generate outputs objects and store them in the ITree at well-known locations (i.e. paths like in a filesystem).
Plugins are responsible for determining where in the tree to store results, and for ensuring that analysis tasks don't "clobber" or overwrite the

results of other analysis tasks.

Statistics plugin ITree layout
The statistics plugin generates statistics objects: IProfiles and IHistograms. It uses a naming convention where the path represents the

type of the statistic and the data variable options:
For 1D and 2D Profiles:

® / [1D Profile or 2D Profile] / [x (+ y) axis nane] / [profiled variable nane]
For 1D and 2D Histograms:

® / [1D Histogramor 2D Histogran] / [x (+ y) axis nanme]

Two statistics of the same type and using the same variables but with different options (e.g. bin size) will “clobber" — i.e. write to the
same location in the tree. This may be addressed in a future release.

MIIC Integration

Deployed plugins are available from the MIIC web application and the MIIC REST interface.

The analysis web page allows users to create new analysis tasks by selecting from plugins that support your plan. Users enter arguments, as
specified by the plugin. All the information typed in the "args" text area uses autocomplete, so users don't need to remember complex variable

names.

The statistics plugin defines inputs for x & y bins and x, y & data variables as shown below:

Edit Analysis

Analysis Type Statistics M

Usage

-data_var <arg> Profile data variable (for 1D & 2D Profiles)
-x_bins <arg> number of X axis bins

—-X_max <arg> X axis maximum

-X_min <arg> X axis minimum

-X_var <arg> X axis variable (for all Histograms & Profiles)
-y_bins <arg> number of Y axis bins

-y_max <arg> Y axis maximum

-y_min <arg> Y axis minimum
-y_var <arg> Y axis variable (for 2D Histograms & Profiles)

N

Args
-x_var TARGET:MidTime_V -data_var TARGET:SolarZenithAngle_Sub

OK Cancel

Once created, analysis tasks are named according to the names of result objects generated by the plugin:
Analysis Tasks for VIIRS-CERES
A /2D Profile/x=Time_and_Position_Longitude_of CERES_FOV_at_surface y=Time_and_Position_Colatitud. ..
A /2D Profile/x=MidTime_V y=StartTime_V/SolarZenithAngle_Sub
A /2D Histogram/Filtered_Radiances_ CERES_WN_filtered_radiance___upwards vs Time_and_Position_Tim. ..
A /1D Histogram/Filtered_Radiances_CERES_TOT _filtered_radiance___upwards

Update New

Developing Plugins

The AnalysisPlugin Interface

All analysis plugins must implement the interface gov.nasa.miic.plugin.AnalysisPlugin.

The interface has methods for:

Returning plugin version information

. Testing plugin ICPlan support
Returning plugin Input/Output metadata
Performing analysis

rPONE

Versioning Methods

These methods must return the plugin name and version. This allows us the possibility of adding new plugin versions without breaking ICPlans

that rely on older versions:

@verride
public String getName() {
return "My Plugin";

@verride
public String getVersion() {
return "0.1";

Methods to Test ICPlan Support

Plugins must indicate if they work with an ICPlan.

Here is a plugin that refuses to operate on an ICPlan with fewer than a bakers' dozen events:

...

@verride
publ i c bool ean supports(Anal ysisbData ad) {
return (ad. get NunkEvents() > 12);

AnalysisData is the object that provides access to the ICPlan as AIDA analysis objects and is described below.

Input/Output Metadata Methods

Plugins must report what user inputs they accept. Inputs are specified using the Apache Commons CLI library, using the Options object.

...

/**

* Called by MIC to get the options used by this plugin.

* Use options for anything that is not in the ICPlan itself.

* @aram data access to the data in an I CPlan using the Al DA API

* @eturn Options object representing all required and optional input
options.

*/

public Options getlnputOptions(Anal ysi sData data);

Apache Commons CLI is typically used to build command-line programs that accept complex command-line inputs. In our case, it provides a
convenient way for plugins to specify their inputs including:

® Options with one or more argument values (where each option may itself be mandatory or optional)
® Option values of a specific type (integer, etc.)
® Mutually exclusive option groups (i.e. user must choose one among several options)

The plugin must also report what object(s) they will generate or modify given a set of inputs. The CommandLine object stores user inputs
according to the plugins Options object. These inputs are guaranteed to be valid — meaning that options marked as required are provided, and
option values are of the correct type.

If the plugin knows at this time that it cannot generate results for the given inputs, it may throw a PluginException.

...

* Get the results path: where in the ITree the results will be stored
* @araminputs the inputs are processed sonehow to determ ne the path
* @hrows Plugi nException if illegal input
*/
public String getResultsPath(ConmandLi ne i nputs) throws

Pl ugi nExcepti on;

...

Analysis Methods

The analyze function is called by MIIC when analysis must be performed. All ICPlan information is available from the AnalysisData object,
described below.

The first form supports grouping multiple tasks from the same plugin together. This may allow plugins to organize their processing task so as to
minimize the number of times data from the ICPlan must be read from disk:

...

* Called to performmnultiple anal yses for one plugin. G ouped together
for performance.

*

* Analysis results are attached to an | Tree obtai ned from
Anal ysi sDat a.

* The convention is to store results in a folder with the plugin nane.

* @aramdata access to I CPlan data
* @araminputs nultiple inputs for the plugin
* @hrows Plugi nException if the plugin can't generate results
*/
public void anal yze(Anal ysi sData data, List<ComandLi ne> inputs)
t hrows Pl ugi nExcepti on;

...

* Called to performone anal ysis task.

*

* Analysis results are attached to an | Tree obtai ned from
Anal ysi sDat a.

* The convention is to store results in a folder with the plugin nane.

* @aramdata access to I CPlan data
* @araminput stores input vals for the plugin
* @hrows Plugi nException if the plugin can't generate results
*/
public void anal yze(Anal ysi sData data, CommandLine i nput) throws
Pl ugi nExcepti on;

...

Upon failure to generate results a PluginException may be thrown. Otherwise, AIDA object(s) are expected to be stored in the AIDA results tree at
the location(s) reported by getResultsPath. Plugins may generate Tuple, Histogram, Profile, DataPointSet, and Function objects. All objects may
also provide arbitrary string annotations, which can convey additional meaningful information.

AnalysisData Object

This object provides read-only access to the ICPlan and all of its available raw data for processing. We do not directly expose the ICPlan object to
the plugin as this would create an unnecessary software safety risk.

The AnalysisData object is used to:

® Access general ICPlan metadata
® Access the AIDA tree for storing result objects
® Obtain AIDA objects representing ICPlan data (ITuples for filtered data and IProfiles for averaged data)

ICPlan Metadata Access

The bulk of the AnalysisData interface allows access to general ICPlan metadata:

/**
* Get the UTC tine at the beginning of the intercalibration plan
* @eturn UTC tine
*/
public DateTi me getBegin();
/**
* Get the UTCtine at the end of the intercalibration plan
* @eturn UTC tine
*/
public DateTinme get End();

11
/'l event paraneters
/11

/**

* CGet the nunber of events in the plan

* @eturn

*/

public int getNunEvents();
/**

* Get the UTCtine at the start of an event
* @aram event| D which event

* @eturn UTC tine

*/

public DateTi me get Event Begi nTinme(int eventlD);
/**

* Get the UTC tine at the end of an event

* @aram event| D which event

* @eturn UTC tinme

*/

public DateTime get Event EndTi me(int eventlD);
/**

* Get northerly bounds of the event region
* @aram event| D which event

* @eturn degrees |atitude

*/
public double getEventLatNorth(int eventlD);
/**

* Get southerly bounds of the event region

* @aram event| D whi ch event

* @eturn degrees |atitude

*/
public doubl e get EventLat South(int eventID);
/**

* Get westerly bounds of the event region

* @aram event| D whi ch event

* @eturn degrees |ongitude

*/
public doubl e get EventLonWst(int eventID);
/**

* CGet easterly bounds of the event region

* @aram event| D whi ch event

* @eturn degrees |ongitude

*/
publi c doubl e get Event LonEast(int eventID);

/1
/'l collection netadata
/1

public enum Col | ecti onType { TARGET, REFERENCE };

/**

* Check if the plan has data of the indicated type
* @aramtype

* @eturn true if has data

*/

publ i c bool ean hasCol |l ection(Col |l ectionType type);

/**

* CGet the nanme of the data collection

* @aramtype

* @eturn product name

*/

public String getProduct(CollectionType type);

/**

* Get the instrunent nane for the collection

* @aramtype

* @eturn instrunment nane

* [

public String getlnstrument(CollectionType type);

/**

* Get the satellite nanme for the collection
* @aramtype

* @eturn satellite nane

* [

public String getSatellite(CollectionType type);

/**

* Get the list of variables available for the collection
* @aramtype

* @eturn list of variable nanes

*/

public Set<String> getDataVariabl es(CollectionType type);

11
/1 query variable nmetadata
11

/**
* Get the mnimumlegal value for a variable, if known
* @aramtype
* @aramvar variabl e nanme
* @eturn mni mumval ue or null
*/
publ i c Doubl e getVariableM n(CollectionType type, String var);

/**

* Get the maxi mum | egal value for a variable, if known

* @aramtype

* @aram var variabl e nane

* @eturn maxi mum val ue or null

*/

publ i c Doubl e getVariabl eMax(Col |l ectionType type, String var);

/**

* Get the single nmissing value for a variable, if known

* @aramtype

* @aramvar variabl e nane

* @eturn mssing value or null

*/

publ i c Doubl e getVariabl eM ssing(CollectionType type, String var);

/**
* Get the units for a variable, if known

* @aramtype
* @aramvar variabl e name

* @eturn units nane or null

*/
public String getVariableUnits(CollectionType type, String var);

ITree Access

The AnalysisData object will return JAIDA data and results trees. The results tree is where your plugin must store analysis result objects. The data
tree is a read-only tree and will be of limited use to clients.

public | Tree get Tree();
public | Tree get ResultsTree();

The syntax and use of JAIDA is outside of the scope of this document. A good first step would be to look at how the Statistics plugin works.

Obtaining ICPlan Data

ICPlan data must be requested by event index, collection, and variable(s) desired. For ICPlans that collect filtered data, ITuple objects will be
returned. For ICPlans that collect averaged data, IProfile objects will be returned: IProfilelD (for 1D histogram averaged data) or IProfile2D (for
2D histogram averaged data)

The two functions are functionally equivalent. The first version returns a collection of IManagedObjects, each of which must be cast to the correct
type: ITuple, IProfile2D, or IProfile1lD. The second version can be used by clients that already know what type of object will be returned.

/**

* Get | CPlan data

* @aramcoll ection TARGET or REFERENCE col | ection

* @aram event which event

* @aramvars data vars fromthe collection to retrieve

* @eturn collection of analysis object(s) -- I Tuple, IProfilelD or
| Profile2D object(s) currently

* @hrows M| CException object could not be generated

*/

public Col | ecti on<l ManagedObj ect > get Anal ysi sCbj ects(Col | ecti onType
collection, int event, Collection<String> vars) throws M| CExcepti on;

/**

* Get I CPlan data by type

*

* @aramtype provides the Java type of object to return, IProfilelD,
| Profil e2D or | Tuple

* @aramcoll ection TARGET or REFERENCE col | ection

* @aram event which event

* @aramvars data vars to retrieve

* @eturn collection of analysis object(s) -- |Tuple or IProfile2D
object(s) currently

* @hrows M| CException object could not be generated

*/

public <T> Col | ecti on<T> get Anal ysi sCbjects(T type, CollectionType

collection, int event, Collection<String> vars) throws M| CExcepti on;

All data is loaded from the ICPlans' NetCDF files, on demand. For IProfiles, there will be one object returned per variable requested. ITuples may
contain all variables that share a common spatial definition.

ITuple objects are potentially much larger than IProfile objects. IProfiles are loaded from NetCDF disk files once and stored in-memory,
whereas IProfiles must be loaded from disk each time. This has practical implications for plugin authors:

® For performance, try to minimize the number of times getAnalysisObjects is called for IProfiles. This will reduce the number of
disk reads.
® To avoid memory errors, don't keep references to multiple ITuple objects.

ITuple-Specific Functions

To help plugins optimize how their use of ITuples, there is a separate method to obtain a "prototype" tuple definition:

* A lTuple "prototype" tells you what variables are in a tuple, and
what the min & max val ues for each variable are.

* This can be used by plugins to prevent calling "getAnalysi sthjects
mul tiple tines (an expensive operation)

*

* @aram col |l ection
* @aram var
* @eturn
*/
public | Tupl e get Tupl eProt ot ypeByVari abl e(Col | ecti onType col |l ecti on,
String var);

The ITuple prototype has no data inside it but it is used to inform plugins:

® Which variables are stored in which tuples. (Note that only variables with the same spatial definition will be located in the same tuple)
® Get the min and max values for data variables without having to read all the data

Testing Plugins

The application AnalysisPluginDriver can be used to test analysis plugins from outside the MIIC web application. This is required so we can
ensure plugins behave properly before taking the risk of adding them to the MIIC web application. It may also be useful for clients that prefer to
run analysis tasks locally.

The driver loads the plugin, downloads the ICPlan and data from a MIIC server, and performs analysis:

...

usage: Anal ysi sPl ugi nDri ver

-mic <mic> mic URL

-pl anl D <pl anl D> i nteger 1D of your plan

-pl ugi ncl ass <cl assnane> cl assnane of the analysis plugin (rmust be in
your CLASSPATH)

-used dDat a re-use already downl oaded | CPlan data if
avai al abl e (doesn't currently check if
out - of -date or not)

Additional plugin options may be included after the driver options. The driver will report an error here if the supplied plugin options are incorrect.

For example:

Loaded plugin: Statistics version: 1.0

org. apache. commons. cl i . M ssi ngOpti onException: M ssing required option
x_var

at org. apache. commons. cli. Parser. checkRequi redOpti ons(Parser.java: 299)
at org. apache. commons. cli. Parser. parse(Parser.java: 231)

at org.apache. commons. cli. Parser. parse(Parser.java: 85)

at
gov. nasa. mi c. pl ugi n. Anal ysi sPl ugi nDri ver. mai n(Anal ysi sPl ugi nDri ver.java:1l
39)

usage: Statistics

-data_max <arg> Data axi s maxi mum

-data_mn <arg> Data axi s m ni mum

-data_var <arg> Profile data variable (for 1D & 2D Profil es)

-X_bins <arg> nunber of X axis bins

- X_max <arg> X axi's maxi mum

-X_mn <arg> X axi s m ni num

-X_var <arg> X axis variable (for all H stograns & Profiles)
-y _bins <arg> nunber of Y axis bins

-y_max <arg> Y axi s nmaxi num

-y_mn <arg> Y axis m ni mum

-y_var <arg> Y axis variable (for 2D Histograns & Profiles)

By default, the plugin driver will attempt to render any objects you have added to the results tree. For example, the default rendering of a 1D
histogram object:

Viewing_Angles_CERES_solar_zenith_at_surface

2,800T Entries : 157323
Mean: 45.635

Rms: 16.993
OutOfRange : 2

30 40 50 60 70 80
Viewing_Angles_CERES_solar_zenith_at_surface

Deploying Plugins

To make analysis plugins available to MIIC clients, they must be packaged and deployed to a MIIC server.

Plugin packaging is a jar file containing plugin class files and XML configuration file(s). Configuration files are used by the server to discover and
configure plugin(s). The file name is unimportant but it must be located in the folder "META-INF/plugins".

The format of the configuration file is springframework "bean" syntax. It simply defines a bean (i.e. Java object) for your plugin from your class that
implements the AnalysisPlugin interface. It then passes this object to the analysisPluginRegistry using a utility called PluginBeanFactoryPostProc
essor.

Below is the XML configuration to configure a the MIIC plugins jar. This jar contains two plugins: Statistics and SumBinnedData:

META-INF/plugins/miic.plugin.xml
<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. org/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springfranmework. or g/ schena/ p"
xm ns: context="http://ww. springframework. org/ scherma/ cont ext "
xm ns:tx="http://ww. springframework. org/schema/tx"
xm ns:util ="http://ww.springframework. org/schena/util"
Xsi : schemalLocati on="
htt p://wwv. spri ngfranmewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans-4. 1. xsd
http://ww. springframework. or g/ schema/ cont ext
htt p: //ww. springfranewor k. or g/ schena/ cont ext/ spri ng-cont ext. xsd
http://ww. springfranmework. org/ schema/t x
http://ww. springframewor k. or g/ schema/ t x/ spring-tx. xsd
http://wwv. springfranework. org/ schena/ uti
http://ww. springfranework. org/schena/util/spring-util-4.1.xsd">

<l-- The plugin objects (may thensel eves use spring config if desired)
-->

<bean id="stats" class="gov.nasa.niic.analysis.plugin.Statistics"/>

<l-- The factory bean adds plugins to a list so the systemcan find them

-->

<bean cl ass="gov.nasa.niic.util.Plugi nBeanFact oryPost Processor" >
<property nanme="extensi onBeanNane" val ue="anal ysi sPl ugi nRegi stry"/>
<property name="pl ugi nBeanNane" val ue="stats"/>

</ bean>

<l-- The plugin objects (may thensel eves use spring config if desired)
-->

<bean i d="sunbi nned" cl ass="gov. nasa. nic. anal ysi s. pl ugi n. SunBi nnedDat a"/ >

<l-- The factory bean adds plugins to a list so the systemcan find t hem
-->
<bean cl ass="gov.nasa.niic.util.Plugi nBeanFact or yPost Processor" >
<property nanme="ext ensi onBeanNane" val ue="anal ysi sPl ugi nRegi stry"/>
<property nanme="pl ugi nBeanNane" val ue="sumnbi nned"/ >
</ bean>
</ beans>

Once packaged in a jar, the jar must be copied to

	MIIC Analysis Plugin

